Name:

Instructions:

- All answers must be written clearly.
- You may use a calculator, but you must show all your work in order to receive credit.
- Be sure to erase or cross out any work that you do not want graded.
- If you need extra space, you may use the back sides of the exam pages (if you do, please write me a note so that I know where to look).
- You must include all work to receive full credit.

1. Consider a standard deck of 52 cards. What is the probability of a four of a kind? (This occurs when the cards have denominations a, a, a, a, b.)
2. Consider a roullete wheel consisting of 50 numbers 1 through 50,0 , and 00 . If Phan always bets that the outcome will be one of the numbers 1 through 20 , what is the probability that (a) Phan will lose his first 7 bets,
(b) his first win will occur on his ninth bet?
3. The monthly worldwide average number of airplane crashes of commercial airlines is 3.5 . What is the probability that at most 1 accident will occur in next 2 months?
4. The r.v. X has a mgf given by

$$
m_{X}(t)=\frac{1}{1-t}, \quad t<1
$$

If u is some unknown number greater than 0 , what is $\mathbb{P}(X>1+u \mid X>u)$?
5. A manufacturing company sources widgets from three different suppliers (A, B, and C). Based on the company's quality control data, it appears that 3 percent of widgets coming from A are faulty, as are 5 percent of the widgets coming from B , and 2 percent coming from C. Based on recent purchasing records, suppliers A, B, and C supply 30 percent, 20 percent, and 50 percent of the company's stock of widgets, respectively.
(a) What is the probability that a random widget from the company's stock is faulty?
(b) Given that a widget is faulty, what is the probability that it came from supplier C?
(c) Using the definition of independence of events, determine whether the events $F=\{$ widget is faulty $\}$ and $C=\{$ widget came from supplier C$\}$ are independent or not.
6. Suppose the joint density function of the random variables X and Y is

$$
f(x, y)=\left\{\begin{array}{ll}
c(x+y) & 0<x, y<1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

(a) Find the value of c.
(b) Compute $\mathbb{P}\left(X^{2}+Y^{2} \leq 1\right)$
(c) Compute $\mathbb{E}\left[X^{2} Y\right]$.
7. Suppose X is a normal r.v. with mean 1 and variance 1 and let Y be an independent Poisson r.v. with parameter 2. What is $\operatorname{Var}(2 X-Y)$?
8. Let X be a uniform random variable over (1,6). Find the moment generating function of X.
9. Suppose X has the following moment generating function

$$
m_{X}(t)=\frac{e^{t}}{1-t^{2}}
$$

Find $\mathbb{E}[X]$. (This distribution is known as the Laplace distribution)
10. A person has 100 light bulbs whose lifetimes are independent exponentials with mean 5 hours. If the bulbs are used one at a time, with a failed bulb being replaced immediately by a new one, approximate the probability that there is still a working light bulb after 525 hours.

